Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барлаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06

Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калига (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Красноядр (861)203-40-90 Красноядск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Россия (495)268-04-70

Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13

Казахстан (772)734-952-31

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47

https://introtest.nt-rt.ru || ite@nt-rt.ru

Модуль связи беспроводной "АэроТрек-GPRS"

Содержание

Термины и сокращения

1. Описание модуля

- 1.1. Общие сведения. Назначение
- 1.2. Основные возможности
- 1.3. Технические характеристики
- 1.4. Условия эксплуатации
- 1.5. Внешний вид и устройство модуля
- 1.6. Принцип работы
 - 1.6.1. Функционирование интерфейсов
 - 1.6.2. Режимы работы
 - 1.6.3. Организация связи

2. Подготовка к работе

- 2.1. Конфигурирование модуля
- 2.2. Установка SIM-карты
- 2.3. Внешние соединения

3. Работа

- 3.1. Включение модуля
- 3.2. Мониторинг соединения
- 4. Меры безопасности
- 5. Техническое обслуживание
- 6. Тара и упаковка
- 7. Маркирование
- 8. Комплектация

Приложение 1 Приложение 2 Приложение 3

Термины и сокращения

модуль, МСБ	– модуль связи беспроводной "АэроТрек-GPRS";
пк	– персональный компьютер;
ПО	 программное обеспечение;
АТ-команда	– команда для конфигурации и управления модулем;
GPRS	 сервис пакетной передачи данных посредством радиосигнала;
GSM	– общий стандарт для сетей мобильной связи;
SIM-карта	– идентификационный модуль абонента;
канал	– проводной коммуникационный порт модуля. В состав
	модуля входит три встроенных канала: последовательные интерфейсы RS-232, RS-485 и USB, а также интерфейс
	цифровых входов/выходов, подсоединяемый при помощи
	платы расширения. Каждый из каналов является
	отдельным коммуникационным приложением.
соединение	 независимое беспроводное IP-соединение,
	обеспечивающее обмен данными между одним из каналов молуля и удаленным хостом. Каждый канад может иметь
	несколько одновременных соединений.

1. Описание модуля

1.1. Общие сведения. Назначение

Модуль "АэроТрек-GPRS" предназначен для обеспечения беспроводного канала связи стандарта GSM между устройствами в составе распределенных сетей телеметрии, управления и автоматизации технологических процессов.

Модуль связи представляет собой программно-управляемое приемо-передающее устройство, преобразующее сигналы стандартных проводных интерфейсов в радиочастотные посылки и обратно.

Модуль может использоваться как в качестве модема под управлением внешнего контроллера (через АТ-команды), так и в качестве самостоятельного беспроводного контроллера, в соответствии с заложенным в него ПО.

Модуль реализован на базе беспроводных процессоров фирмы Sierra Wireless, обеспечивающих возможность работы в четырех радиочастотных диапазонах: EGSM 900/GSM 850 (2 Ватта), DCS1800/PCS1900 (1 Ватт).

1.2. Основные возможности

- пакетный обмен данными GPRS класс 10.
- три независимых канала: RS-485, RS-232, USB;
- возможность подключения дополнительного канала с использованием платы расширения;
- возможность установки нескольких беспроводных соединений одновременно для каждого канала.
- 4 режима работы для каждого канала плюс режим модема,
- автоматическая установка и поддержка соединения, кроме режима модема;
- встроенные часы реального времени с независимым питанием;
- индикация состояния модуля;

1.3. Технические характеристики

Параметр	Значение
Диапазон напряжений питания постоянного тока, В	10 - 29
Максимальная потребляемая мощность не более, ВА	10
Рабочий частотный диапазон	GSM 850/EGSM 900/DCS1800/PCS1900
GPRS мультислот, класс	10
Скорость обмена GPRS, Кбит/с	прием – до 85,6 передача – до 42,8
Поддержка SIM-карт	3B, 1,8B
Интерфейсы	RS-232, RS-485,USB
Скорости обмена по последовательным интерфейсам, бит/с	1200 - 115200
Дополнительные интерфейсы	Плата расширения (3 цифровых входа, 2 цифровых выхода)
Дополнительные функции	Часы реального времени
Класс защиты	IP20
Масса не более, кг	0,3
Габариты (длина, ширина, высота), мм	100x70x57
Срок службы не менее, лет	7

1.4. Условия эксплуатации

Модуль должен эксплуатироваться при следующих условиях:

- закрытые взрывобезопасные помещения без агрессивных сред;
- температура окружающего воздуха от минус 20 до плюс 50;
- относительная влажность воздуха не более 80%;
- атмосферное давление от 84 до 106,7 кПа

По устойчивости к климатическим и механическим воздействиям при эксплуатации модуль соответствует требоваиям правил применения абонентских станций сетей подвижной радиотелефонной связи стандарта GSM900/1800

1.5. Внешний вид и устройство модуля

В базовом исполнении модуль представляет из себя одноплатное устройство, размещенное в пластиковом корпусе с креплением на DIN-рейку. Внешний вид модуля показан на рис. 1

Внешний вид

В состав модуля входят: беспроводной процессор Sierra Wireless, блок питания, интерфейсы RS-232 и RS-485, интерфейс USB, держатель SIM-карты, разъем для подключения внешней антенны. В модуле, также, предусмотрен 20-контактный разъем расширения, к которому опционально можно подстыковать плату расширения с дополнительными интерфейсами, либо другими функциональными устройствами. Структурная схема модуля связи приведена на рис. 2

Структурная схема

рис. 2

1.6. Принцип работы модуля

Необходимым условием для нормального функционирования модуля связи является наличие подключенной услуги "Пакетная передача данных GPRS" одного из операторов сотовой связи.

1.6.1. Функционирование интерфейсов

В базовом исполнении модуль связи содержит три коммуникационных канала: RS-232, RS-485 и USB. Каждый из них является самостоятельным приложением и может вести обмен по своему беспроводному соединению, в соответствии с выбранным режимом работы.

Кроме базовых интерфейсов, модуль может быть дополнен другими приложениями с использованием платы расширения. В частности, к нему может быть подстыкована плата цифровых входов/выходов (см. Приложение 3) с выделением для нее самостоятельного беспроводного соединения.

1.6.2. Режимы работы

Режим работы устанавливается для каждого канала отдельно, кроме режима модема. Выбор режима работы канала производится при конфигурировании модуля командой установки режима AT+MD (см. Приложение 1). ПО модуля поддерживает следующие режимы:

режим модема – единственный режим, в котором встроенное приложение АэроТрекGPRS не запускается, т. е. модуль связи используется в качестве беспроводного модема. Управление каналами производится внешним контроллером с использованием АТ-команд³. Установка режима производится при конфигурировании вводом команды AT+WOPEN=0. Возобновление работы приложения АэроТрекGPRS выполняется командой AT+WOPEN=1.

командный режим - выбирается, если:

- канал используется для вывода статусных сообщений (RS-232, USB).
- канал не используется

В этом режиме для каналов RS-232 и USB доступно управление AT-командами.

клиент modbus/TCP – инициирует TCP-соединение с сервером modbus/TCP. Принимает modbus-запросы, поступающие в последовательный порт канала, с проверкой контрольной суммы, конвертирует их в пакеты modbus/TCP и посылает на удалённый сервер. При получении ответа от сервера производит обратную конвертацию.

При конфигурировании канала задаётся IP-адрес сервера с которым будет установлено соединение. Можно, также, задать дополнительные IP-адреса для обмена по нескольким соединениям одновременно.

сервер modbus/TCP¹ – ожидает поступления TCP-запросов от клиента modbus/TCP. Конвертирует поступающие от клиента запросы modbus/TCP в modbus-кадры с добавлением контрольной суммы и передаёт их в последовательный порт канала. После получения ответа производит обратную

конвертацию, возвращая ответ клиенту. Если на клиентской стороне TCPсоединение устанавливает ПО пользователя (без участия АэроТрек-GPRS, см. п. 1.6.3 Вариант 2), то кадр запроса должен содержать заголовок 6 байт, согласно спецификации modbus/TCP.

При конфигурировании канала задаётся IP-порт сервера², на который будут поступать запросы от клиентов.

клиент uniOr 4 - инициирует TCP-соединение с сервером uniOr. Обмен данными ведётся по протоколу modbus/TCP. Кроме того, для организации работы с сервером uniOr, используется внутренний протокол обмена служебной информацией. Работа в этом режиме возможна только совместно с программным обеспечением uniOr 4, установленном на удалённом ПК.

клиент uniOr 3 - использует потоковый протокол обмена с включением управляющих символов. Работа в этом режиме возможна только совместно с программным обеспечением uniOr 3, установленном на удалённом ПК.

режим конфигурирования – используется для первоначальной настройки модуля. Вход в режим производится при включении питания модуля и установленном джампере конфигурирования.

	каналы			
режимы	RS-232	RS-485	USB	Плата расширения
командный	•	•	•	•
клиент modbus/TCP	•	•		
сервер modbus/TCP	•	•		•
клиент uniOr 4	•	•		•
клиент uniOr 3	•	•		
конфигурирование	•		•	

Ниже приведена таблица возможных режимов работы для каждого канала.

² Каналы, работающие в режиме сервера должны иметь уникальный номер порта.
 ³ Описание АТ-команд процессора Q2686(87) представлено в документе

AT_команды_руководство_англ.pdf

□ Проверку контрольной суммы можно отключить при конфигурировании модуля командой AT+MCR (см. Приложение 1). Это даёт возможность обмениваться данными любого формата (не только modbus). Отключение проверки CRC необходимо производить одновременно и на клиентской, и на серверной стороне.

¹ Для работы в режиме сервера необходимо выделение оператором связи постоянного IP-адреса.

1.6.3. Организация связи

Примеры организации связи, приведённые ниже, показаны для отдельно взятого канала модуля. Каналы МСБ независимы, и могут работать одновременно в разных режимах. К примеру, канал RS-232 может работать в режиме клиент modbus/TCP, а канал RS-485 того же модуля, в режиме клиент uniOr.

Вариант 1

Организация обмена данными между устройствами, имеющими интерфейсы RS-232 или RS-485 представлена на рис. 3 а. По такой схеме коммуникационная пара модулей может работать в режимах: клиент modbus/TCP - сервер modbus/TCP.

Если конечные устройства поддерживают протокол modbus, то пару модулей можно установить в режим modbus/TCP. В этом случае обмен данными осуществляется по стандартной схеме клиент-сервер (запрос-ответ). Значение таймаута ожидания для устройства 1 выбирается с учётом возможных задержек в GPRS и IP-сетях, которые могут составлять несколько секунд.

<u>Пример</u>: ПК (устройство 1), подключенный через интерфейс RS-232 к МСБклиенту может опрашивать контроллер (устройство 2), подключенный через интерфейсы RS-232 или RS-485 к МСБ-серверу, либо плату расширения, если она установлена на МСБ-сервере.

рис. З а

В режиме клиент modbus/TCP предусмотрена возможность установки дополнительных IP-соединений на канал и привязки к ним modbus-адресов из некоторого диапазона. Это позволяет устройству 1, используя один канал МСБклиента, опрашивать несколько каналов МСБ-серверов, находящихся как на одном, так и на разных модулях связи (рис. 3 б).

Выбор опрашиваемого канала (маршрутизация), в данном случае, осуществляется установкой нужного адреса в очередном кадре modbus. Привязка адресов производится при конфигурировании командой AT+MAL.

<u>Пример:</u> ПК (устройство 1), подключенный через интерфейс RS-232 к МСБклиенту может опрашивать контроллер (устройство 2), подключенный к порту RS-232/RS-485 модуля 1 - по первому соединению, плату расширения этого же модуля - по второму соединению и контроллер (устройство 3), подключенный к порту RS-232/RS-485 модуля 2 - по третьему соединению. Для примера зададим следующую таблицу маршрутизации:

Соединение 1 (устр. 2): IP-адрес 10.166.77.1:502 – modbus-адреса 1-24; Соединение 2 (устр. 3): IP-адрес 10.166.77.34:502 – modbus-адреса 26-247; Соединение 3 (расш.): IP-адрес 10.166.77.1:1024 – modbus-адреса 25-25.

Таким образом, если устройство 1 произведёт modbus-запрос с адресом из диапазона 1-24, то он будет послан устройству 2, запрос с адресом из диапазона 26-247 получит устройство 3, а плата расширения модуля 1, будет доступна только по адресу 25.

рис. 3 б

Вариант 2

• Если устройство 1 имеет сетевой интерфейс, т. е. может быть напрямую подключено к IP-сетям, то необходимость в МСБ-клиенте отпадает (рис. 4). Устройство 1, в этом случае, само может выполнять роль TCP-клиента.

<u>Пример:</u> Диспетчерское ПО, запущенное на сетевом ПК (устройство 1), может опрашивать контроллеры (устройства 2, 3), подключенные через интерфейсы RS-232 или RS-485 к МСБ-серверам, либо платы расширения, если они установлены на МСБ-серверах.

рис. 4

Вариант З

Для организации связи с сервером uniOr, используемый для этого канал модуля устанавливается в режим клиент uniOr. При использовании такой схемы (рис. 5) отпадает необходимость в выделении МСБ постоянного IP-адреса. Клиент uniOr лишь инициирует соединение, после установки которого, сервер начинает опрос подключенных к клиенту устройств.

рис. 5

В режиме клиент uniOr предусмотрена возможность установки дополнительных IPсоединений на канал. Это даёт возможность каналу работать с несколькими серверами одновременно (например, в целях мониторинга объекта из разных мест). Алгоритм установки и поддержания GPRS-соединения представлен на рис. 6. Количество попыток соединения N, предшествующих системному сбросу, можно задать при конфигурировании командой AT+MCA (см. Приложение 1)

рис. 6

2. Подготовка к работе

2.1. Конфигурирование модуля

Перед началом работы модуль связи необходимо сконфигурировать, исходя из условий эксплуатации. Перед включением, необходимо снять крышку модуля и установить джампер "Конфиг." (находится между разъёмом RS-485 и держателем SIM-карты). Подстыкуйте порт RS-232 модуля к одному из СОМ-портов ПК стандартным модемным кабелем. На ПК запустите терминальную программу (например HyperTerminal) и установите следующие параметры СОМ-порта: 115200, 8, нет, 1, аппаратное управление.

Для конфигурирования также можно использовать USB-интерфейс, для этого на компьютере должен быть установлен USB-драйвер из комплекта поставки. (см. Приложение 2)

Включите модуль.

В окно терминальной программы выводится стартовое сообщение вида:

DEV: 14.12.2011 9:50:51 AirTreck v1.4.0 CH1:0,600,ff CH2:0,30,2f CH4:21,30,2f Config mode

Для конфигурирования модуля используются специальные АТ-команды АэроТрек-GPRS. Описание команд представлено в Приложении 1.

2.1.1. Установите параметры последовательных портов RS-232, RS-485

Пример конфигурирования для канала RS-485:

- AT+RS=9600,2
- AT+DF=8,1,2
- AT+RP=0,2
- AT+FC=1,2
- AT+RTO=30,2
- AT+TTO=500,2

2.1.2. <u>Установите режим работы, адреса соединений и таймаут ожидания для</u> каждого канала.

Внимание! Если какой-либо канал не планируется использовать, отключите его командой AT+MD=0,X , где X – номер канала

Пример конфигурирования для канала RS-232:

- AT+MD=20,1
- AT+ADC=10.166.77.50,502,1
- AT+CTO=60

Пример конфигурирования для канала расширения:

• AT+MD=21,4

- AT+ADC=0,502,4
- AT+CTO=120

2.1.3. Установите общие параметры модуля связи

Пример:

- AT+AN=internet
- AT+AU=user
- AT+AP=user
- AT+ID=12
- AT+MCA=10
- AT+STM=2011,1,25,2,15,35,00
- AT+DBG=0
- AT+ADT=9021234567
- AT+TMD=0

2.1.4. Конфигурации

Для быстрой настройки каналов можно создать конфигурационный файл. Это простой текстовый файл, в каждой строке которого записана одна АТ-команда. Определённый набор таких команд формирует необходимую конфигурацию модуля. Создав набор таких файлов, можно быстро перестраивать модуль для определённого функционального назначения. Файл конфигурации можно создать просто, взяв за основу файл *config.txt*, имеющийся в комплекте поставки, отредактировав его нужным образом.

Чтобы запустить сценарий конфигурирования в программе HyperTerminal откройте Файл/Свойства/Параметры/Параметры ASCII и в поле Задержка для строк введите значение 500, нажмите ОК, ОК. Откройте Передача/Отправить текстовый файл, выберите необходимый файл конфигурации, ОК. Убедитесь, что на все команды сценария получен корректный ответ.

По окончании конфигурирования выключите питание модуля и снимите джампер "Конфиг.

2.2. Установка SIM-карты

Устанавливайте SIM-карту при выключенном модуле. Держатель карты расположен в нижней части модуля. Перед установкой карты необходимо деактивировать ввод PIN-кода с помощью мобильного телефона.

2.3. Внешние соединения

Подстыкуйте к модулю необходимые внешние соединения. Ниже приведено описание внешних разъемов.

Питание 10-29 В

Винтовой разъем EHDR

Сигнал	№ контакта	Описание
VCC (+)	1	Питание 10 – 29 В пост.
GND	2	общий

RS-232

Функционирует как DCE-устройство. Для подстыковки используется стандартный модемный кабель с разъемом DB-9. Интерфейс позволяет использовать 8 сигнальных линий в режиме модема и 4 линии (TxD, RxD, RTS, CTS) в остальных режимах.

Сигнал	№ контакта	Описание
DTR	4	Готовность DTE
DSR	6	Готовность DCE
DCD	1	Обнаружение несущей
RI	9	Индикатор вызова
RTS	7	Запрос передачи
CTS	8	Разрешение передачи
TxD	3	Передаваемые данные
RxD	2	Принимаемые данные
SG	5	Общий

RS-485

Для подстыковки используется винтовой разъем MC-1,5/3 с возможностью подключения дренажного провода.

Сигнал	№ контакта	Описание
A	1	Линия А
В	2	Линия В
G	3	Дренажный (опция)

USB

Стандартный разъем USB тип В

Сигнал	№ контакта	Описание
VCC	1	+5 B
D-	2	Данные -
D+	3	Данные +
GND	4	общий

Антенна

Для подстыковки антенны используется разъем SMA-типа. Волновое сопротивление нагрузки 50 Ом. Антенна должна быть подстыкована до включения модуля.

3. Работа

3.1. Включение модуля

Включение модуля происходит сразу после подачи питания. Состояние модуля отображается при помощи индикаторов «Статус 1» и «Статус 2». Индикатор «Статус 1» отображает состояние канала RS-232. Индикатор «Статус 2» отображает состояние канала RS-485. Индикатор «Статус 4» отображает состояние канала расширения, если установлена соответствующая плата.

Состояние индикаторов	"Статус 1"	"Статус 2"	"Статус 4"
выключен	Встроенное приложение остановлено, IP-соединение установлено, либо пауза между обменом данными		
Мигание вкл – 0,25 с выкл – 0,25 с	Инициализация модуля, установка GPRS соединения		
Мигание вкл – 0,5 с выкл – 0,5 с	Установка IP-соединения в режиме клиент		
Мигание вкл – 2 с выкл – 2 с	Ожидание соединения в режиме сервер		
Кратковременное мигание	При каждом приеме или передаче данных		
Включен	Ошибка инициализации обрыв соединения		инения

Время установки GPRS соединения и инициализации приложений для RS-232, RS-485 и платы расширения зависит от состояния сети и составляет примерно 10-20 с.

3.2. Мониторинг соединения

Встроенное ПО АэроТрекGPRS реализует автоматическую поддержку установленных GPRS, IP -соединений и их восстановление в случае разрыва связи. Восстановление "зависших" соединений обеспечивается установкой корректного значения таймаута ожидания (команда AT+CTO) на каждом активном канале модуля.

3.3. Мониторинг состояния модуля

Кроме светодиодной индикации, текущее состояние модуля можно отслеживать с помощью статусных сообщений, которые выводятся в один из незадействованных портов: USB, RS-232, либо в порт удалённого терминала, для контроля с помощью терминальной программы (например, стандартной программы Windows Hyperterminal). Порт для вывода сообщений можно задать командой AT+DBG при конфигурировании (см. Приложение 1).

В модуле предусмотрен избирательный вывод статусных сообщений с различных уровней встроенного приложения. Конфигурация выводимой информации определяется маской статусных сообщений. При необходимости можно вообще отключить вывод сообщений с определённого канала. Установка маски производится командой AT+DBM (см. Приложение 1).

3.4. Удалённый терминал

Используется для удалённого конфигурирования, управления и мониторинга состояния модуля. Это дополнительный сервисный канал модуля со своим IP-портом. Терминал может работать как в режиме сервера, так и в режиме клиента. Для доступа к терминалу, работающему в режиме сервера модуль должен иметь постоянный IP-адрес. Подключение при этом производится при помощи любой терминальной программы (например, Hyperterminal через TCP/IP (Winsock)). В режиме клиента, терминал сам соединяется с удалённым хостом. Конфигурирование терминала производится командами AT+TMD, AT+TAD, AT+TOT (см. Приложение 1).

<u>Мониторинг</u>: Разрешение вывода статусных сообщений в порт удалённого терминала, задаётся при конфигурировании, командой AT+DBG=6. Все сообщения, предшествующие запуску терминала сохраняются во флешпамяти. После установки соединения с терминалом, можно вывести архив сохранённых статусных сообщений, используя команду AT+FLH. Всего в памяти хранится 255 последних сообщений.

Остановить вывод текущих статусных сообщений, можно, нажав клавишу ESC. Это удобно, в случае необходимости ввода конфигурационных или управляющих АТ-команд. Для возобновления вывода, необходимо повторно нажать клавишу ESC.

Конфигурирование: Удалённое конфигурирование модуля производится АТ-командами (см. Приложение 1). После того, как все необходимые параметры

установлены, необходимо завершить процесс конфигурирования командами AT@ , AT+RST.

<u>Управление</u>: удалённый терминал распознаёт управляющие АТ-команды (см. Приложение 1). К примеру, можно управлять состоянием цифровых выходов, при наличии соответствующей платы расширения.

3.5. **SMS-сервис**

SMS-сервис поддерживает следующие функции:

 отправка модулем sms-сообщений на заданные телефонные номера, при наступлении определённых событий;

В параметрах модуля (команда AT+SM) можно разрешить или запретить посылку sms при наступлении определённого события, а также задать список телефонных номеров (команды AT+ADT, AT+DLT), которым будут адресоваться sms-сообщения. При наступлении разрешённых событий, sms будут посылаться на все номера из списка. При пустом списке посылка sms будет недоступна.

• посылка команд на модуль с помощью sms-сообщения.

В sms-сообщении можно посылать АТ- команды конфигурирования модуля¹, а также команды управления платой БВВ (см. Приложение 1)

Для посылки управляющих команд на модуль необходимо отправить smsсообщение, содержащее АТ-команду². Результат выполнения команды посылается в ответном sms-сообщении.

¹ посылку команд конфигурирования необходимо предварять командой at+stp (остановка всех текущих соединений) и завершать посылкой команд at@ (сохранение введённых параметров) и at+rst (перезагрузка модуля);
² в sms-сообщениях символы вводятся в нижнем регистре; для команд конфигурирования каналов, необходимо обязательно указывать номер канала.

4. Меры безопасности

Модуль "АэроТрек-GPRS" соответствует классу III защиты от поражения электрическим током, в соответствии с ГОСТ 12.2.007.0-75.

При эксплуатации и техническом обслуживании необходимо соблюдать требования ГОСТ 12.3.019-80, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок потребителей».

Подключение, регулировка и техническое обслуживание модуля должны производиться только квалифицированными специалистами, изучившими настоящее руководство по эксплуатации.

Во избежание выхода модуля из строя, не допускается:

- производить установку, подключения к модулю и работы по его техническому обслуживанию при включенном питании.
- производить внешние подключения, не соответствующие, описанным в настоящем руководстве.

5. Техническое обслуживание

Техническое обслуживание модуля связи производится обслуживающим персоналом не реже одного раза в полгода. К работам по техническому обслуживанию модуля допускаются лица, прошедшие инструктаж по технике безопасности и имеющие квалификационную группу по электробезопасности не ниже III для электроустановок до 1000 В.

Обслуживание включает в себя выполнение следующих операций: – очистку корпуса и разъемов модуля от пыли, грязи и посторонних предметов;

- проверку качества крепления модуля;

проверку качества подключения внешних разъемов, антенны и SIM-карты.
 Обнаруженные при осмотре недостатки следует устранить.

6. Тара и упаковка

Модуль связи упаковывается по документации предприятия-изготовителя.

7. Маркирование

Маркировка модуля наносится на его корпус. Она содержит:

- товарный знак предприятия;
- обозначение степени защиты корпуса;
- диапазон напряжений питания и потребляемую мощность;

• заводской номер модуля.

8. Комплектация

Исполнение 42.7610.021.00.000-01

- Базовая плата 42.7610.021.00.100 в корпусе для установки на DINрейку – 1шт ;
- Внешняя GSM антенна (см. примечание) 1 шт ;
- Розетка MC-1,5/3-G-3,81 для интерфейса RS-485 1 шт;
- Розетка MC2,5/2-ST-5.08 для подключения питания 1 шт.
- Удлинительный ВЧ-кабель (опционально) 1 шт;
- Настоящее Руководство 1 шт;
- Диск с ПО и вспомогательной документацией 1 шт.

Исполнение 42.7610.021.00.000-02

- Базовая плата 42.7610.021.00.100 в корпусе для установки на DINрейку – 1шт ;
- Плата расширения 42.7610.021.00.200 1 шт;
- Внешняя GSM антенна (см. примечание) 1 шт ;
- Розетка MC-1,5/3-G-3,81 для интерфейса RS-485 1 шт;
- Розетка MC2,5/2-ST-5.08 для подключения питания 1 шт.
- Удлинительный ВЧ-кабель (опционально) 1 шт;
- Настоящее Руководство 1 шт;
- Диск с ПО и вспомогательной документацией 1 шт.

<u>Примечание:</u> Тип внешней GSM антенны может варьироваться по согласованию с заказчиком. Модуль может комплектоваться следующими типами антенн: АНТ-01, АНТ-02, АНТ-03, АНТ-04, АНТ-05. Типы удлинительных кабелей: КС10-3, КС10-5, КС10-10

Команды конфигурирования модуля

Внимание! По окончании конфигурирования, изменённые параметры необходимо сохранить командой **at@**

Конфигурирование последовательных портов

Во всех командах конфигурирования последовательных портов может присутствовать параметр выбора порта.

р – номер порта для конфигурирования. Допустимые значения: 1 – RS-232, 2 – RS-485. Если этот параметр опущен или равен нулю, то команда относится к текущему порту, который используется для конфигурирования (за исключением USB). При этом, изменение настроек порта не влияет на работу порта в режиме конфигурирования.

команда: at+rs= h [, p] – установка скорости обмена

h - скорость обмена с последовательным портом. Допустимые значения: 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200. В режиме конфигурирования используется скорость 115200.

Ответ: ОК!

Пример: at+rs=19200, 2 ОК! Установка скорости обмена 19200 бит/с для порта RS-485.

команда: at+df= I, s [, p] – выбор формата данных

I – кол-во бит данных. Допустимые значения: 5,6,7,8 и 9.
 s – кол-во стоповых бит. Допустимые значения: 1, 2.

Ответ: OK! Пример: at+df=8, 1 OK!

Выбор формата 8 бит данных, 1 стоп-бит для текущего порта.

команда at+rp= pa [, p] - выбор режима контроля четности

ра – паритет. Допустимые значения: 0 – нет, 1 – нечетность, 2 – четность.

Ответ: ОК! Пример: at+rp=2 ОК!

Выбор контроля по четности для текущего порта.

команда at+fc= c [, p] – выбор режима управления потоком данных

с – управление потоком. Допустимые значения: 0 – нет управления, 1 – аппаратное управление RTS/CTS.

Ответ: OK! **Пример**: at+fc=1,1 OK!

Выбор режима аппаратного управления для порта RS-232.

команда at+rto= to [, p] – установка таймаута чтения порта

to – таймаут чтения (мс). Если после приёма очередного байта, в течении этого времени в приёмный буфер порта не поступило данных, приём кадра считается завершённым. Значение этого параметра выбирается исходя из минимально возможного промежутка времени между кадрами данных. Допустимые значения: 1 – 50 мс.

Ответ: ОК! **Пример**: at+rto=10,2 ОК! Установка таймаута чтения для порта RS-485.

команда at+tto= to [, p] - установка таймаута ожидания ответа

to – таймаут ожидания ответа (мс) в протоколе modbus. Допустимые значения: 100 – 5000 мс.

Ответ: OK! **Пример**: at+tto=500,1 OK! Установка таймаута ожидания 0,5 сек для порта RS-232.

Настройки GPRS-доступа

команда at+an= str – установка имени точки доступа (APN)

str – имя точки доступа. Длина строки ограничена 40 символами. Строка нулевой длины очищает поле.

Ответ: OK! **Пример**: at+an=ud18.ugsm OK! Установка APN: ud18.ugsm.

команда at+au= str - установка имени пользователя (Login)

str – имя пользователя. Длина строки ограничена 15 символами. Строка нулевой длины очищает поле.

Ответ: ОК! Пример: at+au=user ОК! Установка имени пользователя: user.

команда at+ap= str – установка пароля (Password)

str – пароль для доступа. Длина строки ограничена 15 символами. Строка нулевой длины очищает поле.

Ответ: ОК! **Пример**: at+ap=pass OK! Установка пароля: pass.

Настройки каналов

Во всех командах конфигурирования каналов присутствует параметр выбора канала.

ch – номер канала. Доступны три варианта: 1 – RS-232, 2 - RS-485, 4 – канал расширения.

На одном канале может быть устанавлено несколько соединений, поэтому каждый канал имеет список соединений канала, в который можно добавлять или удалять адреса соединений.

команда at+adc= addr, p,ch – добавление IP-адреса в список соединений канала

addr – IP-адрес. **р** - IP-порт

Ответ: ОК! Пример: at+adc=127.0.0.1,502,2 ОК!

Установка IP-адреса локального сервера для канала RS-485.

Примечание: 1) Можно задать не более 3-х адресов на канал

 Если модуль используется в качестве сервера, в команде достаточно задать порт, например at+adc=0,502,2, при этом список соединений может иметь только одну запись.

команда at+dlc= addr, p,ch – удаление IP-адреса из списка соединений канала

addr – IP-адрес. **р -** IP-порт

Ответ: ОК!

Пример: at+dlc=127.0.0.1,502,2 OK!

Удаление адреса из списка соединений для канала RS-485.

Примечание: Чтобы изменить адрес соединения, необходимо сначала удалить из списка существующий адрес, а затем добавить новый.

команда at+dac=ch – Очистка списка соединений канала

Ответ: OK! Пример: at+dac=1 OK!

Полная очистка списка соединений канала RS-232.

команда at+md = md , ch – установка режима работы канала

md – режим канала. Возможны варианты: 0 – канал не задействован, 20 – клиент modbus/TCP, 21 – сервер modbus/TCP, 30 – клиент uniOr4, 40 – клиент uniOr3

Ответ: ОК!

Пример: at+md=21,4 OK!

Для канала расширения выбран режим сервер modbus/TCP.

команда at+cto= num, ch – установка таймаута проверки соединения канала

пит – значение таймаута в секундах. Диапазон допустимых значений 5 - 604000. **Ответ**: OK!

Пример: at+cto=60

OK!

Установка таймаута проверки соединения – 1 мин.

команда at+dbm= msk, chdv – установка маски статусных сообщений отдельного канала или устройства вцелом

<u>chdv</u> – номер канала (значения 1-4), либо устройство (значение 5) **msk** – маска статусных сообщений. Диапазон допустимых значений 0 – 255 (поумолчанию 255). Маска представлена одним байтом, где каждый бит соответствует своему уровню сообщений:

Биты	Десятичное значение установленного бита	Уровень
0	1	ключевые сообщения
1	2	системные сообщения
2	4	GPRS
3	8	IP-каналы
4	16	UART
5	32	протокол
6	64	SMS
7	128	данные

Ключевые сообщения – это сообщения, дающие самое краткое представление о состоянии модуля. Если маска не равна нулю, то этот бит устанавливается автоматически.

Формирование маски производится путём сложения десятичных значений битов: например, чтобы выводились ключевые, системные и IP-сообщения, устанавливаем маску 1+2+8=11.

Обнулив маску, можно запретить вывод статусных сообщений для отдельного канала или устройства вцелом.

Ответ: OK! **Пример**: at+dbm=34

OK!

Установка маски для вывода ключевых, системных сообщений и сообщений протокола.

Настройки модуля

команда stm= y,m,d,wd,h,m,s – установка текущего времени модуля

y,m,d,wd,h,m,s – соответственно год, месяц, день, день недели, час, минута, секунда.

Ответ: ОК **Пример**: at+stm=2011,1,25,2,15,35,0

команда at+id= num – установка идентификационного номера модуля

пит – ID модуля. Допустимо вводить цифры, начиная с единицы до 10 знаков. **Ответ**: OK! **Пример**: at+id=2043 OK! Установка ID модуля - 2043.

команда at+mca= num – установка количества попыток GPRS или IP соединения до рестарта модуля

пит – кол-во попыток. Диапазон допустимых значений 1-30. Ответ: ОК! Пример: at+mca=10 ОК! Установка кол-ва попыток – 10.

команда at+dbg= num – установка порта вывода статусных сообщений

num – номер порта. Допустимые значения 0 (не выводятся), 1 (RS-232), 3 (USB), 5 (SMS), 6 (удалённый терминал).
Ответ: OK!

Пример: at+dbg=3 OK!

Установка порта вывода статусных сообщений на порт USB.

команда atv = ch – отображение текущей конфигурации канала или общей конфигурации модуля.

ch – номер канала. Значение ch=5 для отображения общей конфигурации модуля.

Ответ: карта конфигурации **Пример**: atv=2

[2] dbgMsk ff UART: 9600-8-1, pty 0, ctrl 1, readTout 4, waitTout 1700 ipAddr: 10.166.77.50: 3002 mode: 40 (type 2, proc 8) connTout: 60

Маска статусных сообщений: выводятся все сообщения Параметры канала RS-232: скорость 9600, 8 бит, стоповый 1, без проверки на четность, аппаратное управление потоком, таймаут чтения 4 мс, таймаут ожидания 1,7 сек, тип устройства – клиент, режим – клиент uniOr 3, адрес назначения 10.166.77.50, порт 3002, таймаут проверки соединения -1 мин

atv=5

Dev time: 14.12.2011 10:52:48 APN: internet: user, user dbgPort: 1, msk ff Term: mode 0, port 1025, tOut 600 maxConn: 4 dev ID: 12

Текущее время модуля, APN - internet, имя пользователя «user», пароль «user», Порт вывода статусных сообщений: RS-232, маска общих статусных сообщений устройства: выводить все сообщения, удалённый терминал - отключен, кол-во попыток GPRS, IP соединений – 4, идентификатор устройства – 12.

Настройки SMS-сервиса

команда at+sm= act,evn,ch - разрешение/запрет посылки sms на заданные телефонные номера при наступлении определённого события. Список телефонных номеров формируется командами AT+ADT, AT+DLT, AT+DAT.

act – действие при наступлении события. Допустимые значения: 0 – не посылать sms, 1 – посылать sms (по-умолчанию 0); **еvn** – номер события. Ниже приведена таблица допустимых значений.

№ канала	№ события	событие	
	0	Вход 1 включен	
	1	Вход 1 выключен	
л	2	Вход 2 включен	
4	3	Вход 2 выключен	
	4	Вход 3 включен	
	5	Вход 3 выключен	

ch – номер канала*.

Ответ: ОК **Пример**: а

p: at+sm=1,2,4 OK

Разрешение посылки sms на заданные номера при включении Входа 2 платы расширения.

команда at+smn=ch - запрет посылки sms для всех событий канала.

ch – номер канала*.

Ответ: ОК

Пример: at+smn=4 ОК

Запрет посылки sms на заданные номера для всех событий платы расширения.

* в текущей версии ПО доступны только события платы расширения (канал 4)

команда at+adt= tel - добавление телефонного номера в список номеров.

tel – телефонный номер, состоящий из 10 цифр (без кода страны).

Пример: at+adt=9021234567 ОК

команда at+dlt= tel - удаление телефонного номера из списка номеров.

tel – телефонный номер, состоящий из 10 цифр.

Пример: at+dlt=9021234567 ОК

команда at+dat - Очистка списка телефонных номеров.

Пример: at+dat ОК

Настройки удалённого терминала

команда at+tmd= md – установка режима терминала

md – режим терминала. Допустимые значения 0 – терминал отключен, 1 – режим сервера, 2- режим клиента.

Ответ: OK! Пример: at+tmd=1 OK!

Разрешение терминала в режиме сервера.

команда at+tad= addr, p – установка IP-адреса терминала

addr – IP-адрес (любой адрес, обычно ноль). p - IP-порт

Ответ: OK! Пример: at+tad=0,1024 OK!

Установка порта терминала 1024.

команда at+tot= to – установка таймаута терминала (сек)

to – таймаут терминала. Если на терминале нет активности втечение этого времени, соединение закрывается. Допустимый диапазон значений 5 – 604000.

Ответ: OK! **Пример**: at+tot=300 OK!

Установка таймаута 5 мин.

Настройки режима клиент modbus/TCP

команда at+mal= min,max,idx,ch – привязка modbus-адресов к соединениям канала.

Привязка modbus-адресов может быть полезна для маршрутизации modbusзапросов в режиме клиент modbus/TCP (см. § 1.6.3). Предполагает наличие нескольких соединений на канале, которые должны быть предварительно добавлены командой AT+ADC. В остальных режимах параметры привязки не используются. **min*** – нижняя граница диапазона modbus-адресов, допустимые значения 0-247; **max*** – верхняя граница диапазона modbus-адресов, допустимые значения 0-247; **idx**** – индекс соединения, допустимые значения 0 - (N-1), где N – количество доступных соединений канала; **ch** – номер канала.

Ответ: ОК!

Пример: at+mal=6,9,2,1 OK!

Привязка диапазона modbus-адресов 6-9 к третьему соединению канала RS-232.

* Для привязки единственного адреса, значения min и max должны быть одинаковыми. Нулевое значение при маршрутизации игнорируется.

****** Количество доступных соединений и индекс каждого соединения можно отобразить командой AT+VAL.

команда at+val= ch – просмотр привязки modbus-адресов к соединениям канала

<u>ch</u> – номер канала.

Ответ: карта привязки

Пример: at+val=1

index 0/ address 10.166.77.55: 502 (mbAddrs: 1 - 1) index 1/ address 10.166.77.55: 503 (mbAddrs: 2 - 2) index 2/ address 10.166.77.55: 1024 (mbAddrs: 5 - 8)

Отображение карты привязки для канала 1.

команда at+mcr=fg, ch – разрешение проверки контрольной суммы CRC.

<u>fg</u> – флаг проверки. Возможные значения 0 – проверка отключена, 1 – проверка включена. По умолчанию 1. <u>ch</u> – номер канала.

Ответ: ОК!

Пример: at+mcr=0,1

AT+MCR: OK

Отключение проверки CRC для канала RS-232.

Управляющие команды

команда at+stp – остановка текущих соединений.

Команда осуществляет закрытие всех текущих IP-соединений и GPRS.

Ответ: OK! Пример: at+stp OK!

команда at+rst – перезагрузка модуля

При подаче этой команды производится мягкая перезагрузка модуля:закрытие IP, GPRS соединений, завершение GSM регистрации, системный сброс.

Ответ: OK! Пример: at+rst OK!

команда at+flh – вывод архива статусных сообщений.

Команда выполняется только в режиме удалённого терминала. Выводит архив статусных сообщений. Архив содержит только сообщения, предшествующие запуску терминала. Всего 255 последних записей.

Ответ: вывод архива **Пример**: at+flh

____FLASH_LOG____

>> START MODULE >> DEV: 28.2.2012 16:16:8 AirTreck v1.4.0 CH1:40,300,2f CH2:40,20,2f CH4:0,600,2b SMS service launched SIM stat 2

команда at+ioc= com,[oNum,vol] – управление платой расширения БВВ

сот – команда управления. Допустимые значения: 1 – чтение состояния цифровых выходов, 2 - чтение состояния цифровых входов, 5 – запись цифрового выхода.

оNum - номер цифрового выхода, допустимые значения 0 – выход Y1, 1 – выход Y2 (используется при com=5).

vol - значение выхода, допустимые значения 0 – выкл., 1 – вкл. (используется при com=5)

Ответ: для com=1 - ioc: Y1, Y2 (состояние выходов) для com=2 - ioc: U1, U2, U3 (состояние входов) для com=5 - ioc: OK, если команда выполнена. Пример 1: at+ioc=1 ioc: 0,0 Пример 2: at+ioc=2 ioc: 0,0,1 Пример 3: at+ioc=5,0,1 - включение выхода Y1 ioc: OK

Сохранение параметров

команда at@ – сохранение параметров во flash-памяти модуля

Работа с USB-портом

USB-порт удобно использовать для контроля состояния модуля с помощью терминальной программы. По умолчанию, сообщения статуса выводятся именно на этот порт. При этом порты RS-232 и RS-485 остаются свободными для работы со встроенными приложениями. Через USB также возможно обновление встроенного ПО (firmware).

Для работы с USB, на ПК должна быть установлена Java, версии не ниже 6.24. Необходимо установить USB-драйвер. Найдите файл **USBDriverInstallerV3700.exe** из комплекта поставки и произведите инсталляцию драйвера, следуя подсказкам.

По окончании подсоедините модуль к ПК USB-кабелем и включите питание модуля. При первом включении запускается мастер установки оборудования Windows. Следуйте стандартной процедуре установки, выберите установку драйвера из определённого места, указав путь к папке с драйвером (по умолчанию для Windows XP это Program Files/Sierra

Wireless/Drivers/plugins/com.wavecom.drivers.usb.win32_3.6.1.0-201002241531/resources/xp).

Откройте Панель управления/SierraWireless SerUsb. Запустится апплет для конфигурации драйвера. В нижнем поле (список конфигураций) нужно выделить конфигурацию по-умолчанию и нажать "Change". В полях min. COM и max. COM ввести диапазон портов, назначаемых при подключении устройств. Чтобы назначить один порт, значения в этих полях нужно установить одинаковыми. Нажать кнопку "Validate" и выйти из апплета.

Подключите USB разъем модуля к ПК с помощью USB-кабеля. Включите модуль. На ПК нужно открыть Панель управления/Телефон и модем/Модемы. В списке модемов появится Wavecom Wireless cpu с указанным номером порта (из диапазона портов, заданных в апплете драйвера). В программе HyperTerminal в свойствах соединения выбрать порт модема и установить соединение. Убедиться в наличии обмена с модулем через USB, подав команду AT+CGMR.

Примечание: при подаче некоторых команд (AT+WDWL, AT+CFUN, AT+WOPEN), на модуле производится системный сброс, поэтому при использовании порта USB, для продолжения работы, в программе HyperTerminal необходимо переустановить соединение (Вызов/ отключить -> Вызов/ вызов).

Плата бинарных входов/выходов

Плата БВВ является расширением модуля связи и содержит 3 бинарных входа и 2 бинарных выхода. Для обмена данными с платой выделен отдельный коммуникационный канал со своим IP-адресом (канал 4 при конфигурировании) и возможностью работы в следующих режимах: сервер modbus/TCP, клиент uniOr4.

Для обмена данными с платой БВВ используются команды modbus:

• Чтение статуса выходов

Запрос: XX 01 00 0Y 00 0Z где XX – адрес устройства (любое число), Y- начальный выход (возможные значения 0, 1), Z- количество выходов (возможные значения 1,2)

Ответ: XX 01 01 0Y где XX – адрес устройства, Y – состояние запрошенных выходов, при этом младший бит соответствует выходу Y1.

• Чтение входов

Запрос: XX 02 00 0Y 00 0Z где XX – адрес устройства (любое число), Y- начальный вход (возможные значения 0-2), Z- количество входов (возможные значения 1-3)

Ответ: XX 02 01 0U

где XX – адрес устройства, U – состояние запрошенных входов, при этом младший бит соответствует входу U1.

• Запись выхода

Запрос: XX 05 0Y 00 ZZ 00 где XX – адрес устройства (любое число), Y- номер выхода (возможные значения 0,1), ZZ – устанавливаемое значение (0x00 – ноль, 0xFF - единица)

Ответ: XX 05 0Y 00 ZZ 00 – дублирование запроса

На все остальные команды возвращается код ошибки в соответствии с протоколом modbus.

Подключение внешних цепей

Сигнал	№ контакта	Описание
U1	XS1/1	Вход 1
+U	XS1/2	+ 24 B
U2	XS1/3	Вход 2
U3	XS1/4	Вход З
Y1	XS2/1	Выход 1 (120 мА)
-Y	XS2/2	- 24 B
Y2	XS2/3	Выход 2 (120 мА)

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брялиск (4832)59-03-52 Влаливсток (473)240-28-31 ырянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06

(3412)26-03-58 Ижевск Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8322)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Киргизия (996)312-96-26-47

Сератов (043)249-36-76 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13

Пермь (342)205-81-47

(3462)77-98-35 Сургут Пермя (342)203-01-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Ульяновск (8422)24-23-35 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Казахстан (772)734-952-31

https://introtest.nt-rt.ru || ite@nt-rt.ru

Россия (495)268-04-70