Архангельск (8182)63-90-72 Астана (7172)727-132 **Астрахань** (8512)99-46-04 Барнаул (3852)73-04-60 (4722)40-23-64 Белгород Enguer (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06

(3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кеменово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04

Липецк (4742)52-20-81

Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набележные Челны (8552)20-53-41 **Нижний Новгоро**д (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омек (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Camana (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13

Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Vльяновск (8422)24-23-59 фа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 **Череповец** (8202)49-02-64 Ярославль (4852)69-52-93

Тверь

(3462)77-98-35

(4822)63-31-35

Казахстан (772)734-952-31

https://introtest.nt-rt.ru || ite@nt-rt.ru

Россия (495)268-04-70

Дефектоскопы магнитопорошковые универсальные ДМПУ-1

Внесены в Государственный реестр средств измерений Регистрационный номер 43753-10

Выпускаются по техническим условиям ТУ 4276-005-20872624-2008

Назначение и область применения

Дефектоскопы магнитопорошковые универсальные ДМПУ-1 (далее по тексту – дефектоскоп) предназначены для формирования и измерения тока в намагничивающих устройствах при различных режимах намагничивания и размагничивания ферромагнитных изделий с целью выявления дефектов типа нарушений сплошности в изделиях в процессе магнитопорошкового контроля.

Область применения: отрасли промышленности, где используется магнитопорошковый контроль.

Описание

Принцип действия дефектоскопа основан на преобразовании напряжения и тока сети (220 В, 50 Гц) или источника постоянного тока ((22-30) В, 30 А) с помощью импульсных преобразователей и схем управления в намагничивающий ток заданной формы и амплитуды.

Выявление дефектов типа нарушений сплошности в изделиях осуществляется магнитопорошковым методом в соответствии с ГОСТ 21105-87 «Контроль неразрушающий. Магнитопорошковый метод».

Дефектоскоп состоит из электронного блока и намагничивающих устройств: двух катушек намагничивания, соединенных с электронным блоком кабелями гибкими, и кабеля намагничивающего.

Дефектоскоп обеспечивает намагничивание изделий или их участков:

в непрерывном режиме:

- постоянным магнитным полем помошью катушек намагничивания или приставного электромагнита;
- переменным магнитным полем с помощью катушек намагничивания ипи приставного электромагнита;

в импульсном режиме:

- импульсным магнитным полем тока. пропускаемого через кабель намагничивающий, или непосредственно через изделие с помощью электроконтактов.

Дефектоскоп обеспечивает размагничивание изделий или их участков:

- после намагничивания постоянным полем убывающим низкочастотным полем;
- после намагничивания переменным полем плавным снижением амплитуды поля;
- после импульсного намагничивания убывающими по амплитуде импульсами тока.

Основные технические характеристики

Основные характеристики дефектоскопа приведены в таблице 1. Таблица 1

Наименование характеристики	Ед. изм.	Значение характеристики			
Максимальная сила постоянного тока	A	не менее 18,0 (не менее 14,0)*			
Максимальная сила переменного тока	<u> </u>	не менее 22,0			
(амплитудное значение)	A	(не менее 17,0)*			
	τα Λ	не менее 1,8			
Максимальная амплитуда импульсного тока	кА	(не менее 1,4)*			
* - при напряжении питания от источника постоянного тока 22 В					
Длительность импульса на уровне половины	мс	не менее 3			
максимальной амплитуды импульсного тока	MO	The Monde 5			
Диапазон измерений:					
- силы постоянного тока;	Α	1,0-18,0			
-силы переменного тока (амплитудное значение)	Α	1,0-22,0			
- амплитуды импульсного тока	кА	0,4-1,8			
Пределы допускаемой абсолютной погрешности		\pm (0,2+0,05·I),			
при измерении силы постоянного тока и силы	A	где I - измеряемое значение			
переменного тока (амплитудное значение)		силы тока			
Пределы допускаемой абсолютной погрешности		$\pm (0,02+0,1\cdot I),$			
при измерении амплитуды импульсного тока	кА	где I - измеряемое значение			
		амплитуды импульсного тока			
Постоянная катушки намагничивания	(А/см)/А	32 ± 5			
(измеряется в геометрическом центре катушки)					
Диапазон показаний частоты переменного тока	Гц	10-80			
Диапазон показаний напряжения питания	В	0–40			
намагничивающих устройств					
Диапазон задания длительности полного цикла	мин	0,3-6			
размагничивания					
Ток, потребляемый дефектоскопом, при максимальных режимах работы катушек:					
- при питании от сети 220В, 50Гц (действующее					
значение)	A	не более 4,5			
- при питании от источника постоянного тока	Λ.	He donee 4,5			
напряжением (22–30) В	A	не более 30			
Габаритные размеры составных частей	4.	ne objec 30			
дефектоскопа:	:				
- электронного блока (ширина, высота, длина)	MM	не более 370х200х450			
- катушек намагничивания:					
- диаметр внутренний	MM	130±3			
- длина	MM	50±3			
Длина кабеля намагничивающего (сечением 16 мм ²)	М	4 ± 0.2			
Длина кабеля гибкого от катушки намагничивания					
для подключения к электронному блоку	М	не менее 1,5			
Длина кабеля сетевого питания	M	не менее 1,7			
Масса составных частей дефектоскопа:					
- электронного блока	кг	не более 15			
- катушки намагничивания	КГ	не более 5,6			
Средняя наработка на отказ	ч	не менее 5000			
Средний срок службы	лет	не менее 8			

Условия эксплуатации дефектоскопа:	
- температура окружающей среды, °С	5–40
- относительная влажность	
(при t=30°C и более низких, без конденсации влаги), %	не более 75
- атмосферное давление, кПа	84-106,7
мм рт.ст.	630-800
- напряжение питающей сети, В	220 ± 22
- частота питающей сети, Гц	$50 \pm 0,5$
или источник постоянного тока:	
- напряжение, В	22-30
- ток нагрузки максимальный, А	не менее 30
Дефектоскоп относится к группе В2 согласно ГОСТ Р 52931.	

Знак утверждения типа

Знак утверждения типа наносят на электронный блок дефектоскопа методом наклейки и на титульный лист «Руководства по эксплуатации» дефектоскопа типографским способом.

Комплектность

Комплектность дефектоскопа приведена в таблице 2.

Таблица 2

№	Наименование	Обозначение	Количество	
1	Дефектоскоп магнитопорошковый универсальный ДМПУ-1 в составе:	ДМПУ-1	1 компл.	
1.1	электронный блок	ДМПУ-1	1 шт.	
1.2	катушка намагничивания с кабелем гибким для подключения к электронному блоку	K-130	2 шт.	
1.3	кабель намагничивающий	-	1 шт.	
1.4	кабель сетевого питания	-	1 шт.	
2	Стержень для закрепления катушек на заданном расстоянии	-	1 шт.	
3	Лоток для контроля малогабаритных изделий	-	1 шт.	
4	Сумка для упаковки и переноса электронного блока дефектоскопа	-	1 шт.	
5	Чемодан или сумка для упаковки и переноса катушек намагничивания	-	1 шт.	
6	Руководство по эксплуатации	4276-005-20872624-2008 PЭ	1 экз.	
7	Методика поверки	МП 36-261-2009	1 экз.	

Примечание: Дополнительно к стандартному варианту комплектации могут быть поставлены: электромагнит, электроконтакты, кабели гибкие по размерам заказчика, измеритель напряженности магнитного поля ИМАГ-400Ц.

Поверка

Поверка дефектоскопа проводится в соответствии документом «ГСИ. Дефектоскопы магнитопорошковые универсальные ДМПУ-1. Методика поверки» МП 36-261-2009, утвержденным Φ ГУП «УНИИМ» в декабре 2009 года.

Основные средства поверки:

- амперметр МД42, верхний предел измерений силы постоянного и переменного тока 25 A, класс точности 1,5;
- измеритель напряженности магнитного поля ИМАГ-400Ц, относительная погрешность не более 5 % в диапазоне (135–185) А/см;
- шунт измерительный постоянного тока 75 ШСММЗ-75-0,5; номинальное значение по току $I_{\text{ном}}$: 75 A; номинальное значение падения напряжения $U_{\text{ном}}$: 75 мВ; класс точности 0,5;
- осциллограф универсальный двухканальный TDS 1012, диапазон коэффициента отклонения (2-5) мВ/дел, относительная погрешность коэффициента отклонения не более 3 %.

Межповерочный интервал - один год.

Нормативные и технические документы

ТУ 4276-005-20872624-2008 «Дефектоскопы магнитопорошковые универсальные ДМПУ-1»

Заключение

Тип «Дефектоскопы магнитопорошковые универсальные ДМПУ-1» утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахана (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4332)59-03-52 Владивосток (433)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноврск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новосибирск (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Россия (495)268-04-70

Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (869)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13

Казахстан (772)734-952-31

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93